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• For analyzing and drawing a given function f(x)

– Find zero crossings ( f (x) = 0 )

– Find zero crossings of the derivative (extrema) [and 

sometimes of higher order derivatives], look at sign 

around them

– Look at behavior for 𝑥 → ±∞ (or at domain ends)

– Look at singularities (where the function is undefined, 

typically from a division by zero)

– Draw some likely points
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Function analysis
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• The function

– function zero crossings
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Example

2( ) 3 2f x x x  

-1 1 2 3 4

1

2

3

4

5

6

𝑓 𝑥 = 0

𝑥2 − 3𝑥 + 2 = 0

(𝑥 − 1)(𝑥 − 2) = 0

at 𝑥 = 1 ˅ 𝑥 = 2
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• The function

– derivative zero crossings

– sign

minimum at
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Example

2( ) 3 2f x x x  

𝑓′ 𝑥 = 2𝑥 − 3 = 0

at 𝑥 = 3/2
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• The function

– when 𝑥 → ±∞ , 𝑓 𝑥 → +∞

– no singularity

– draw some points

(e.g. for x = 0 and 3)
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Example

2( ) 3 2f x x x  
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• Of the form

• Analysis similar to explicit functions

– Find zero crossings of component functions

– Look at derivative (= tangent vector!)

– Look at behavior for 𝑡 → ±∞ (or at domain ends)

– Look at singularities

– Draw some likely points 
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Parametric curves
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• Examine x(t)=0, y(t)=0

• Examine 𝑡 = ±
𝜋
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• No singularity 
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Example
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Example
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derivative:

'( ) sin

'( ) cos

example for 0 :
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